MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1959 Miklós Schweitzer
8
8
Part of
1959 Miklós Schweitzer
Problems
(1)
Miklós Schweitzer 1959- Problem 8
Source:
11/8/2015
8. An Oblique lattice-cubs is a lattice-cube of the three-dimensional fundamental lattice no edge of which is perpendicular to any coordinate axis. Prove that for any integer
h
=
8
n
−
1
h= 8n-1
h
=
8
n
−
1
(
n
=
1
,
2
,
…
n= 1, 2, \dots
n
=
1
,
2
,
…
) there existis an oblique lattice-cube with edges of length
h
h
h
. Propose a method for finding such a cube. (N. 20)
college contests