MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1962 Miklós Schweitzer
7
7
Part of
1962 Miklós Schweitzer
Problems
(1)
Miklos Schweitzer 1962_7
Source:
9/18/2008
Prove that the function
f
(
ν
)
=
∫
1
1
ν
d
x
(
x
2
−
1
)
(
1
−
ν
2
x
2
)
f(\nu)= \int_1^{\frac{1}{\nu}} \frac{dx}{\sqrt{(x^2-1)(1-\nu^2x^2)}}
f
(
ν
)
=
∫
1
ν
1
(
x
2
−
1
)
(
1
−
ν
2
x
2
)
d
x
(where the positive value of the square root is taken) is monotonically decreasing in the interval
0
<
ν
<
1
0<\nu<1
0
<
ν
<
1
. [P. Turan]
function
integration
trigonometry
calculus
real analysis
real analysis unsolved