Let the sequence of random variables {Xm,m≥0 },X0=0, be an infinite random walk on the set of nonnegative integers with transition probabilities pi=P(Xm+1=i+1∣Xm=i)>0,i≥0 qi=P(Xm+1=i−1∣Xm=i)>0,i>0. Prove that for arbitrary k>0 there is an αk>1 such that Pn(k)=P(0≤j≤nmaxXj=k) satisfies the limit relation L→∞limL1n=1∑LPn(k)αkn<∞.
J. Tomko limitprobability and stats