Let Kn(n=1,2,…) be periodical continuous functions of period 2π, and write kn(f;x)=∫02πf(t)Kn(x−t)dt. Prove that the following statements are equivalent:
(i) ∫02π∣kn(f;x)−f(x)∣dx→0(n→∞) for all f∈L1[0,2π].
(ii) kn(f;0)→f(0) for all continuous, 2π-periodic functions f.
V. Totik functionintegrationreal analysisreal analysis unsolved