MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1981 Miklós Schweitzer
8
8
Part of
1981 Miklós Schweitzer
Problems
(1)
Miklos Schweitzer 1981_8
Source:
1/31/2009
Let
W
W
W
be a dense, open subset of the real line
R
\mathbb{R}
R
. Show that the following two statements are equivalent: (1) Every function
f
:
R
→
R
f : \mathbb{R} \rightarrow \mathbb{R}
f
:
R
→
R
continuous at all points of
R
∖
W
\mathbb{R} \setminus W
R
∖
W
and nondecreasing on every open interval contained in
W
W
W
is nondecreasing on the whole
R
\mathbb{R}
R
. (2)
R
∖
W
\mathbb{R} \setminus W
R
∖
W
is countable. E. Gesztelyi
function
topology