MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1996 Miklós Schweitzer
5
5
Part of
1996 Miklós Schweitzer
Problems
(1)
bijection between convergent and divergent series
Source: miklos schweitzer 1996 q5
10/15/2021
Let K and D be the set of convergent and divergent series of positive terms respectively. Does there exist a bijection between K and D such that for all
∑
a
n
,
∑
b
n
∈
K
\sum a_n,\sum b_n\in K
∑
a
n
,
∑
b
n
∈
K
and
∑
a
n
′
,
∑
b
n
′
∈
D
\sum a_n',\sum b_n'\in D
∑
a
n
′
,
∑
b
n
′
∈
D
,
a
n
b
n
→
0
⟺
a
n
′
b
n
′
→
0
\frac{a_n}{b_n}\to 0\iff \frac{a_n'}{b_n'}\to 0
b
n
a
n
→
0
⟺
b
n
′
a
n
′
→
0
? Under the bijection,
∑
a
n
↔
∑
a
n
′
\sum a_n\leftrightarrow\sum a_n'
∑
a
n
↔
∑
a
n
′
and
∑
b
n
↔
∑
b
n
′
\sum b_n\leftrightarrow\sum b_n'
∑
b
n
↔
∑
b
n
′
.
real analysis