SU2(C)={(z−wˉwzˉ):z,w∈C,zzˉ+wwˉ=1}
A and B are 2 elements of the above matrix group and have eigenvalues eiθ1 , e−iθ1 and eiθ2 , e−iθ2respectively, where 0≤θi≤π . Prove that if AB has eigenvalue eiθ3 , then θ3 satisfies the inequality ∣θ1−θ2∣≤θ3≤min{θ1+θ2,2π−(θ1+θ2)} linear algebramatrixinequalities