MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2010 Miklós Schweitzer
1
1
Part of
2010 Miklós Schweitzer
Problems
(1)
x^x \equiv 1 (mod p)
Source: Miklós Schweitzer 2010 , P1
9/9/2020
Let
p
p
p
be prime. Denote by
N
(
p
)
N (p)
N
(
p
)
the number of integers
x
x
x
for which
1
≤
x
≤
p
1 \leq x \leq p
1
≤
x
≤
p
and x ^ {x} \equiv 1 (\bmod p) Prove that there exist numbers
c
<
1
/
2
c <1/2
c
<
1/2
and
p
0
>
0
p_ {0}> 0
p
0
>
0
such that
N
(
p
)
≤
p
c
N (p) \leq p ^ {c}
N
(
p
)
≤
p
c
if
p
≥
p
0
p \ge p_ {0}
p
≥
p
0
.
number theory