MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2010 Miklós Schweitzer
5
5
Part of
2010 Miklós Schweitzer
Problems
(1)
Vectors in a plane
Source: Miklós Schweitzer 2010 , P5
9/9/2020
Given the vectors
v
1
,
…
,
v
n
v_ {1}, \dots, v_ {n}
v
1
,
…
,
v
n
and
w
1
,
…
,
w
n
w_ {1}, \dots, w_ {n}
w
1
,
…
,
w
n
in the plane with the following properties: for every
1
≤
i
≤
n
1 \leq i \leq n
1
≤
i
≤
n
,
∣
v
i
−
w
i
∣
≤
1
,
\left | v_{i} -w_{i} \right | \leq 1,
∣
v
i
−
w
i
∣
≤
1
,
and for every
1
≤
i
<
j
≤
n
1 \leq i <j \leq n
1
≤
i
<
j
≤
n
,
∣
v
i
−
v
j
∣
≥
3
\left | v_{i} -v_{j} \right | \ge 3
∣
v
i
−
v
j
∣
≥
3
and
v
i
−
w
i
≠
v
j
−
w
j
v_{i} -w_ {i} \ne v_ {j} -w_ {j}
v
i
−
w
i
=
v
j
−
w
j
. Prove that for sets
V
=
{
v
1
,
…
,
v
n
}
V = \left \{v_ {1}, \dots, v_{n } \right \}
V
=
{
v
1
,
…
,
v
n
}
and
W
=
{
w
1
,
…
,
w
n
}
W = \left \{w_ {1}, \dots, w_ {n} \right \}
W
=
{
w
1
,
…
,
w
n
}
, the set of
V
+
(
V
∪
W
)
V + (V \cup W)
V
+
(
V
∪
W
)
must have at least
c
n
3
/
2
cn^{3/2}
c
n
3/2
elements ,for some universal constant
c
>
0
c>0
c
>
0
.
vector