MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2010 Miklós Schweitzer
9
9
Part of
2010 Miklós Schweitzer
Problems
(1)
M dimensional closed set
Source: Miklós Schweitzer 2010, P9
9/9/2020
For each
M
M
M
m-dimensional closed
C
∞
C^{\infty}
C
∞
set , assign a
G
(
m
)
G(m)
G
(
m
)
in some euclidean space
R
q
\mathbb{R}^{q}
R
q
. Denote by
R
P
q
\mathbb{R} \mathbb{P}^{q}
R
P
q
a
q
q
q
-dimensional real projecive space. A
G
(
M
)
⊆
×
R
P
q
G(M) \subseteq \times \mathbb{R} \mathbb{P}^{q}
G
(
M
)
⊆
×
R
P
q
. The set consists of
(
x
,
e
)
(x,e)
(
x
,
e
)
pairs for which
x
∈
M
⊆
P
q
x \in M \subseteq \mathbb {P}^{q}
x
∈
M
⊆
P
q
and
e
⊆
R
q
+
1
=
R
q
×
R
e \subseteq \mathbb {R}^{q+1}= \mathbb{R}^{q} \times \mathbb{R}
e
⊆
R
q
+
1
=
R
q
×
R
and
a
(
0
,
…
,
0
,
1
)
∈
R
q
+
1
\mathrm{a} (0, \ldots,0,1) \in \mathbb{R}^{q+1}
a
(
0
,
…
,
0
,
1
)
∈
R
q
+
1
in a stretched
(
m
+
1
)
(m+1)
(
m
+
1
)
-dimensional linear subspace. Prove that if
N
N
N
is a
n
n
n
-dimensional closed set
C
∞
C^{\infty}
C
∞
, then
P
=
G
(
M
×
M
)
P=G(M \times M)
P
=
G
(
M
×
M
)
and
Q
=
G
(
M
)
×
G
(
N
)
Q=G(M) \times G(N)
Q
=
G
(
M
)
×
G
(
N
)
are cobordant , that is, there exists a
(
2
m
+
2
n
+
1
)
(2m+2n+1)
(
2
m
+
2
n
+
1
)
-dimensional compact , flanged set
C
∞
C^{\infty}
C
∞
with a disjoint union of
P
P
P
and
Q
Q
Q
.
topology
projective space