MathDB
Problems
Contests
Undergraduate contests
Putnam
1946 Putnam
B4
B4
Part of
1946 Putnam
Problems
(1)
Putnam 1946 B4
Source: Putnam 1946
3/13/2022
For each positive integer
n
n
n
, put
p
n
=
(
1
+
1
n
)
n
,
P
n
=
(
1
+
1
n
)
n
+
1
,
h
n
=
2
p
n
P
n
p
n
+
P
n
.
p_n =\left(1+\frac{1}{n}\right)^{n},\; P_n =\left(1+\frac{1}{n}\right)^{n+1}, \; h_n = \frac{2 p_n P_{n}}{ p_n + P_n }.
p
n
=
(
1
+
n
1
)
n
,
P
n
=
(
1
+
n
1
)
n
+
1
,
h
n
=
p
n
+
P
n
2
p
n
P
n
.
Prove that
h
1
<
h
2
<
h
3
<
…
h_1 < h_2 < h_3 <\ldots
h
1
<
h
2
<
h
3
<
…
Putnam
Sequences
approximation