MathDB
Problems
Contests
Undergraduate contests
Putnam
1957 Putnam
A3
A3
Part of
1957 Putnam
Problems
(1)
Putnam 1957 A3
Source: Putnam 1957
7/1/2022
Let
a
,
b
a,b
a
,
b
be real numbers and
k
k
k
a positive integer. Show that
∣
cos
k
b
cos
a
−
cos
k
a
cos
b
cos
b
−
cos
a
∣
<
k
2
−
1
\left| \frac{ \cos kb \cos a - \cos ka \cos b}{\cos b -\cos a} \right|<k^2 -1
cos
b
−
cos
a
cos
kb
cos
a
−
cos
ka
cos
b
<
k
2
−
1
whenever the left side is defined.
Putnam
trigonometry
inequalities
cosine