MathDB
Problems
Contests
Undergraduate contests
Putnam
1957 Putnam
A6
A6
Part of
1957 Putnam
Problems
(1)
Putnam 1957 A6
Source: Putnam 1957
7/1/2022
Let
a
>
0
a>0
a
>
0
,
S
1
=
ln
a
S_1 =\ln a
S
1
=
ln
a
and
S
n
=
∑
i
=
1
n
−
1
ln
(
a
−
S
i
)
S_n = \sum_{i=1 }^{n-1} \ln( a- S_i )
S
n
=
∑
i
=
1
n
−
1
ln
(
a
−
S
i
)
for
n
>
1.
n >1.
n
>
1.
Show that
lim
n
→
∞
S
n
=
a
−
1.
\lim_{n \to \infty} S_n = a-1.
n
→
∞
lim
S
n
=
a
−
1.
Putnam
limit
logarithms