Define S0 to be 1. For n≥1, let Sn be the number of n×n matrices whose elements are nonnegative integers with the property that aij=aji (for i,j=1,2,…,n) and where ∑i=1naij=1 (for j=1,2,…,n). Prove that
a) Sn+1=Sn+nSn−1.
b) ∑n=0∞Snn!xn=exp(x+2x2). PutnamMatricespower seriesgenerating functions