MathDB
Problems
Contests
Undergraduate contests
Putnam
1970 Putnam
A4
A4
Part of
1970 Putnam
Problems
(1)
Putnam 1970 A4
Source: Putnam 1970
5/17/2022
Given a sequence
(
x
n
)
(x_n )
(
x
n
)
such that
lim
n
→
∞
x
n
−
x
n
−
2
=
0
,
\lim_{n\to \infty} x_n - x_{n-2}=0,
lim
n
→
∞
x
n
−
x
n
−
2
=
0
,
prove that
lim
n
→
∞
x
n
−
x
n
−
1
n
=
0.
\lim_{n\to \infty} \frac{x_n -x_{n-1}}{n}=0.
n
→
∞
lim
n
x
n
−
x
n
−
1
=
0.
Putnam
Sequence
limit