MathDB
Problems
Contests
Undergraduate contests
Putnam
1974 Putnam
B2
B2
Part of
1974 Putnam
Problems
(1)
Putnam 1974 B2
Source: Putnam 1974
5/28/2022
Let
y
(
x
)
y(x)
y
(
x
)
be a continuously differentiable real-valued function of a real variable
x
x
x
. Show that if
y
′
(
x
)
2
+
y
(
x
)
3
→
0
y'(x)^2 +y(x)^3 \to 0
y
′
(
x
)
2
+
y
(
x
)
3
→
0
as
x
→
∞
,
x\to \infty,
x
→
∞
,
then
y
(
x
)
y(x)
y
(
x
)
and
y
′
(
x
)
→
0
y'(x) \to 0
y
′
(
x
)
→
0
as
x
→
∞
.
x \to \infty.
x
→
∞.
Putnam
continuous and differentiable