MathDB
Problems
Contests
Undergraduate contests
Putnam
1988 Putnam
B3
B3
Part of
1988 Putnam
Problems
(1)
Putnam 1988 B3
Source:
8/6/2019
For every
n
n
n
in the set
N
=
{
1
,
2
,
…
}
\mathrm{N} = \{1,2,\dots \}
N
=
{
1
,
2
,
…
}
of positive integers, let
r
n
r_n
r
n
be the minimum value of
∣
c
−
d
3
∣
|c-d\sqrt{3}|
∣
c
−
d
3
∣
for all nonnegative integers
c
c
c
and
d
d
d
with
c
+
d
=
n
c+d=n
c
+
d
=
n
. Find, with proof, the smallest positive real number
g
g
g
with
r
n
≤
g
r_n \leq g
r
n
≤
g
for all
n
∈
N
n \in \mathbb{N}
n
∈
N
.
Putnam
real analysis