MathDB
Problems
Contests
Undergraduate contests
Putnam
1992 Putnam
B5
B5
Part of
1992 Putnam
Problems
(1)
Putnam 1992 B5
Source: Putnam 1992
7/18/2022
Let
D
n
D_n
D
n
denote the value of the
(
n
−
1
)
×
(
n
−
1
)
(n -1) \times (n - 1)
(
n
−
1
)
×
(
n
−
1
)
determinant
(
3
1
1
…
1
1
4
1
…
1
1
1
5
…
1
⋮
⋮
⋮
⋱
⋮
1
1
1
…
n
+
1
)
.
\begin{pmatrix} 3 & 1 &1 & \ldots & 1\\ 1 & 4 &1 & \ldots & 1\\ 1 & 1 & 5 & \ldots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \ldots & n+1 \end{pmatrix}.
3
1
1
⋮
1
1
4
1
⋮
1
1
1
5
⋮
1
…
…
…
⋱
…
1
1
1
⋮
n
+
1
.
Is the set
{
D
n
n
!
∣
n
≥
2
}
\left\{ \frac{D_n }{n!} \, | \, n \geq 2\right\}
{
n
!
D
n
∣
n
≥
2
}
bounded?
Putnam
determinant
bounded