Subcontests
(6)Putnam 2003 A5
A Dyck n-path is a lattice path of n upsteps (1,1) and n downsteps (1,−1) that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively. Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck (n−1) paths.\begin{picture}(165,70)
\put(-5,0){O}
\put(0,10){\line(1,0){150}}
\put(0,10){\line(1,1){30}}
\put(30,40){\line(1,-1){15}}
\put(45,25){\line(1,1){30}}
\put(75,55){\line(1,-1){45}}
\put(120,10){\line(1,1){15}}
\put(135,25){\line(1,-1){15}}
\put(0,10){\circle{1}}\put(0,10){\circle{2}}\put(0,10){\circle{3}}\put(0,10){\circle{4}}
\put(15,25){\circle{1}}\put(15,25){\circle{2}}\put(15,25){\circle{3}}\put(15,25){\circle{4}}
\put(30,40){\circle{1}}\put(30,40){\circle{2}}\put(30,40){\circle{3}}\put(30,40){\circle{4}}
\put(45,25){\circle{1}}\put(45,25){\circle{2}}\put(45,25){\circle{3}}\put(45,25){\circle{4}}
\put(60,40){\circle{1}}\put(60,40){\circle{2}}\put(60,40){\circle{3}}\put(60,40){\circle{4}}
\put(75,55){\circle{1}}\put(75,55){\circle{2}}\put(75,55){\circle{3}}\put(75,55){\circle{4}}
\put(90,40){\circle{1}}\put(90,40){\circle{2}}\put(90,40){\circle{3}}\put(90,40){\circle{4}}
\put(105,25){\circle{1}}\put(105,25){\circle{2}}\put(105,25){\circle{3}}\put(105,25){\circle{4}}
\put(120,10){\circle{1}}\put(120,10){\circle{2}}\put(120,10){\circle{3}}\put(120,10){\circle{4}}
\put(135,25){\circle{1}}\put(135,25){\circle{2}}\put(135,25){\circle{3}}\put(135,25){\circle{4}}
\put(150,10){\circle{1}}\put(150,10){\circle{2}}\put(150,10){\circle{3}}\put(150,10){\circle{4}}
\end{picture} Putnam 2003 A4
Suppose that a,b,c,A,B,C are real numbers, a=0 and A=0, such that ∣ax2+bx+c∣≤∣Ax2+Bx+C∣ for all real numbers x. Show that ∣b2−4ac∣≤∣B2−4AC∣ Putnam 2003 B4
Let f(z)=az4+bz3+cz2+dz+e=a(z−r1)(z−r2)(z−r3)(z−r4) where a,b,c,d,e are integers, a=0. Show that if r1+r2 is a rational number, and if r1+r2=r3+r4, then r1r2 is a rational number. Putnam 2003 B3
Show that for each positive integer n, n!=i=1∏nlcm{1,2,…,⌊in⌋} (Here lcm denotes the least common multiple, and ⌊x⌋ denotes the greatest integer ≤x.) Putnam 2003 A2
Let a1,a2,⋯,an and b1,b2,⋯,bn be nonnegative real numbers. Show that (a1a2⋯an)1/n+(b1b2⋯bn)1/n≤((a1+b1)(a2+b2)⋯(an+bn))1/n Putnam 2003 B2
Let n be a positive integer. Starting with the sequence 1,21,31,⋯,n1, form a new sequence of n−1 entries 43,125,⋯,2n(n−1)2n−1, by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of n−2 entries and continue until the final sequence consists of a single number xn. Show that xn<n2.