Let Sn denote the set of all permutations of the numbers 1,2,…,n. For π∈Sn, let σ(π)=1 if π is an even permutation and σ(π)=−1 if π is an odd permutation. Also, let v(π) denote the number of fixed points of π. Show that
π∈Sn∑v(π)+1σ(π)=(−1)n+1n+1n. Putnamintegrationlinear algebramatrixalgebrapolynomialcalculus