5
Part of 2007 Putnam
Problems(2)
Putnam 2007 A5
Source:
12/3/2007
Suppose that a finite group has exactly elements of order where is a prime. Prove that either n\equal{}0 or divides n\plus{}1.
Putnamgroup theoryabstract algebrainductiongeometrygeometric transformationrotation
Putnam 2007 B5
Source:
12/3/2007
Let be a positive integer. Prove that there exist polynomials P_0(n),P_1(n),\dots,P_{k\minus{}1}(n) (which may depend on ) such that for any integer
\left\lfloor\frac{n}{k}\right\rfloor^k\equal{}P_0(n)\plus{}P_1(n)\left\lfloor\frac{n}{k}\right\rfloor\plus{} \cdots\plus{}P_{k\minus{}1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k\minus{}1}.
( means the largest integer )
Putnamalgebrapolynomialfloor functioncalculusderivativelinear algebra