MathDB
Problems
Contests
Undergraduate contests
Putnam
2008 Putnam
B2
B2
Part of
2008 Putnam
Problems
(1)
Putnam 2008 B2
Source:
12/8/2008
Let F_0\equal{}\ln x. For
n
≥
0
n\ge 0
n
≥
0
and
x
>
0
,
x>0,
x
>
0
,
let \displaystyle F_{n\plus{}1}(x)\equal{}\int_0^xF_n(t)\,dt. Evaluate
lim
n
→
∞
n
!
F
n
(
1
)
ln
n
.
\displaystyle\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.
n
→
∞
lim
ln
n
n
!
F
n
(
1
)
.
Putnam
logarithms
integration
limit
calculus
factorial
Support