MathDB
Problems
Contests
Undergraduate contests
Simon Marais Mathematical Competition
2019 Simon Marais Mathematical Competition
A2
A2
Part of
2019 Simon Marais Mathematical Competition
Problems
(1)
Operation a(b+1)
Source: Simon Marais MC 2019 A2
10/14/2019
Consider the operation
∗
\ast
∗
that takes pair of integers and returns an integer according to the rule
a
∗
b
=
a
×
(
b
+
1
)
.
a\ast b=a\times (b+1).
a
∗
b
=
a
×
(
b
+
1
)
.
[*]For each positive integer
n
n
n
, determine all permutations
a
1
,
a
2
,
…
,
a
n
a_1,a_2,\dotsc , a_n
a
1
,
a
2
,
…
,
a
n
of the set
{
1
,
2
,
…
,
n
}
\{ 1,2,\dotsc ,n\}
{
1
,
2
,
…
,
n
}
that maximise the value of
(
⋯
(
(
a
1
∗
a
2
)
∗
a
3
)
∗
⋯
∗
a
n
−
1
)
∗
a
n
.
(\cdots ((a_1\ast a_2)\ast a_3) \ast \cdots \ast a_{n-1})\ast a_n.
(
⋯
((
a
1
∗
a
2
)
∗
a
3
)
∗
⋯
∗
a
n
−
1
)
∗
a
n
.
[/*] [*]For each positive integer
n
n
n
, determine all permutations
b
1
,
b
2
,
…
,
b
n
b_1,b_2,\dotsc , b_n
b
1
,
b
2
,
…
,
b
n
of the set
{
1
,
2
,
…
,
n
}
\{ 1,2,\dotsc ,n\}
{
1
,
2
,
…
,
n
}
that maximise the value of
b
1
∗
(
b
2
∗
(
b
3
∗
⋯
∗
(
b
n
−
1
∗
b
n
)
⋯
)
)
.
b_1\ast (b_2\ast (b_3\ast \cdots \ast (b_{n-1}\ast b_n)\cdots )).
b
1
∗
(
b
2
∗
(
b
3
∗
⋯
∗
(
b
n
−
1
∗
b
n
)
⋯
))
.
[/*]
college contests