MathDB
Problems
Contests
Undergraduate contests
Simon Marais Mathematical Competition
2019 Simon Marais Mathematical Competition
A4
A4
Part of
2019 Simon Marais Mathematical Competition
Problems
(1)
$\sum_{n \in \mathbb{N}} \min(x_n, \frac{1}{n \log n})$ always diverges ?
Source: Simon Marais 2019 A4
10/13/2019
Suppose
x
1
,
x
2
,
x
3
,
…
x_1,x_2,x_3,\dotsc
x
1
,
x
2
,
x
3
,
…
is a strictly decreasing sequence of positive real numbers such that the series
x
1
+
x
2
+
x
3
+
⋯
x_1+x_2+x_3+\cdots
x
1
+
x
2
+
x
3
+
⋯
diverges.Is it necessary true that the series
∑
n
=
2
∞
min
{
x
n
,
1
n
log
(
n
)
}
\sum_{n=2}^{\infty}{\min \left\{ x_n,\frac{1}{n\log (n)}\right\} }
∑
n
=
2
∞
min
{
x
n
,
n
l
o
g
(
n
)
1
}
diverges?
Sequences
series
calculus
real analysis