MathDB
Problems
Contests
Undergraduate contests
Simon Marais Mathematical Competition
2019 Simon Marais Mathematical Competition
B4
B4
Part of
2019 Simon Marais Mathematical Competition
Problems
(1)
Set of Binary Strings
Source: Simon Marais MC 2019 B4
10/14/2019
A binary string is a sequence, each of whose terms is
0
0
0
or
1
1
1
. A set
B
\mathcal{B}
B
of binary strings is defined inductively according to the following rules.[*]The binary string
1
1
1
is in
B
\mathcal{B}
B
.[/*] [*]If
s
1
,
s
2
,
…
,
s
n
s_1,s_2,\dotsc ,s_n
s
1
,
s
2
,
…
,
s
n
is in
B
\mathcal{B}
B
with
n
n
n
odd, then both
s
1
,
s
2
,
…
,
s
n
,
0
s_1,s_2,\dotsc ,s_n,0
s
1
,
s
2
,
…
,
s
n
,
0
and
0
,
s
1
,
s
2
,
…
,
s
n
0,s_1,s_2,\dotsc ,s_n
0
,
s
1
,
s
2
,
…
,
s
n
are in
B
\mathcal{B}
B
.[/*] [*]If
s
1
,
s
2
,
…
,
s
n
s_1,s_2,\dotsc ,s_n
s
1
,
s
2
,
…
,
s
n
is in
B
\mathcal{B}
B
with
n
n
n
even, then both
s
1
,
s
2
,
…
,
s
n
,
1
s_1,s_2,\dotsc ,s_n,1
s
1
,
s
2
,
…
,
s
n
,
1
and
1
,
s
1
,
s
2
,
…
,
s
n
1,s_1,s_2,\dotsc ,s_n
1
,
s
1
,
s
2
,
…
,
s
n
are in
B
\mathcal{B}
B
.[/*] [*]No other binary strings are in
B
\mathcal{B}
B
.[/*]For each positive integer
n
n
n
, let
b
n
b_n
b
n
be the number of binary strings in
B
\mathcal{B}
B
of length
n
n
n
.[*]Prove that there exist constants
c
1
,
c
2
>
0
c_1,c_2>0
c
1
,
c
2
>
0
and
1.6
<
λ
1
,
λ
2
<
1.9
1.6<\lambda_1,\lambda_2<1.9
1.6
<
λ
1
,
λ
2
<
1.9
such that
c
1
λ
1
n
<
b
n
<
c
2
λ
2
n
c_1\lambda_1^n<b_n<c_2\lambda_2^n
c
1
λ
1
n
<
b
n
<
c
2
λ
2
n
for all positive integer
n
n
n
.[/*] [*]Determine
lim inf
n
→
∞
b
n
n
\liminf_{n\to \infty} {\sqrt[n]{b_n}}
lim
inf
n
→
∞
n
b
n
and
lim sup
n
→
∞
b
n
n
\limsup_{n\to \infty} {\sqrt[n]{b_n}}
lim
sup
n
→
∞
n
b
n
[/*] Note: The problem is open in the sense that no solution is currently known to part (b).
college contests