MathDB
Problems
Contests
Undergraduate contests
Vojtěch Jarník IMC
2014 VJIMC
Problem 3
Problem 3
Part of
2014 VJIMC
Problems
(2)
another tanh inequality
Source: VJIMC 2014 1.3
5/20/2021
Let
n
≥
2
n\ge2
n
≥
2
be an integer and let
x
>
0
x>0
x
>
0
be a real number. Prove that
(
1
−
tanh
x
)
n
+
tanh
(
n
x
)
<
1.
\left(1-\sqrt{\tanh x}\right)^n+\sqrt{\tanh(nx)}<1.
(
1
−
tanh
x
)
n
+
tanh
(
n
x
)
<
1.
inequalities
a binomial sum, alternating
Source: VJIMC 2014 2.3
5/21/2021
Let
k
k
k
be a positive even integer. Show that
∑
n
=
0
k
/
2
(
−
1
)
n
(
k
+
2
n
)
(
2
(
k
−
n
)
+
1
k
+
1
)
=
(
k
+
1
)
(
k
+
2
)
2
.
\sum_{n=0}^{k/2}(-1)^n\binom{k+2}n\binom{2(k-n)+1}{k+1}=\frac{(k+1)(k+2)}2.
n
=
0
∑
k
/2
(
−
1
)
n
(
n
k
+
2
)
(
k
+
1
2
(
k
−
n
)
+
1
)
=
2
(
k
+
1
)
(
k
+
2
)
.
Summation
binomial coefficients
algebra