MathDB
2018 PAMO Shortlist: Inequality with condition $a^3 + b^3 + c^3 = 5abc$

Source: 2018 Pan-African Shortlist - A6

May 6, 2019
inequalities

Problem Statement

Let a,b,ca, b, c be positive real numbers such that a3+b3+c3=5abca^3 + b^3 + c^3 = 5abc.
Show that (a+bc)(b+ca)(c+ab)9. \left( \frac{a + b}{c} \right) \left( \frac{b + c}{a} \right) \left( \frac{c + a}{b} \right) \geq 9.