Putnam 1997 B6
Source:
May 31, 2014
PutnamAsymptotecollege contests
Problem Statement
The dissection of the triangle shown below has diameter .
[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(23cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 1.42, xmax = 24.42, ymin = 3.8, ymax = 15.54; /* image dimensions */
Label laxis; laxis.p = fontsize(10);
xaxis(xmin, xmax,defaultpen+black, Ticks(laxis, Step = 1, Size = 2, NoZero), Arrows(6), above = true);
yaxis(ymin, ymax,defaultpen+black, Ticks(laxis, Step = 1, Size = 2, NoZero), Arrows(6), above = true); /* draws axes; NoZero hides '0' label */
/* draw figures */
draw((9.44,8.52)--(12.44,8.52));
draw((9.44,12.52)--(9.44,8.52));
draw((9.44,12.52)--(12.44,8.52));
draw((9.44,10.52)--(10.94,10.52));
draw((10.94,10.52)--(10.94,8.52));
draw((9.44,8.52)--(10.94,10.52));
/* dots and labels */
dot((9.44,8.52),dotstyle);
label("", (9.52,8.64), NE * labelscalefactor);
dot((12.44,8.52),dotstyle);
label("", (12.52,8.64), NE * labelscalefactor);
dot((9.44,12.52),dotstyle);
label("", (9.52,12.64), NE * labelscalefactor);
dot((10.94,8.52),dotstyle);
label("", (11.02,8.64), NE * labelscalefactor);
dot((9.44,10.52),dotstyle);
label("", (9.52,10.64), NE * labelscalefactor);
dot((10.94,10.52),dotstyle);
label("", (11.02,10.64), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
Find the least diameter of this triangle into four parts. (The diameter of a dissection is the least upper bound of the distances between pairs of points belonging to the same part.)