number theoryfunctional equationfunctionalalgebraFrancophone
Problem Statement
Let N≥1 be the set of positive integers.
Find all functions f:N≥1→N≥1 such that, for all positive integers m and n:(a) n=(f(2n)−f(n))(2f(n)−f(2n)),
(b)f(m)f(n)−f(mn)=(f(2m)−f(m))(2f(n)−f(2n))+(f(2n)−f(n))(2f(m)−f(2m)),
(c) m−n divides f(2m)−f(2n) if m and n are distinct odd prime numbers.