MathDB
n = (f(2n)-f(n) )(2 f(n) - f(2n) )

Source: 2021 Francophone MO Seniors p4

April 3, 2021
number theoryfunctional equationfunctionalalgebraFrancophone

Problem Statement

Let N1\mathbb{N}_{\ge 1} be the set of positive integers. Find all functions f ⁣:N1N1f \colon \mathbb{N}_{\ge 1} \to \mathbb{N}_{\ge 1} such that, for all positive integers mm and nn:
(a) n=(f(2n)f(n))(2f(n)f(2n))n = \left(f(2n)-f(n)\right)\left(2 f(n) - f(2n)\right), (b)f(m)f(n)f(mn)=(f(2m)f(m))(2f(n)f(2n))+(f(2n)f(n))(2f(m)f(2m))f(m)f(n) - f(mn) = \left(f(2m)-f(m)\right)\left(2 f(n) - f(2n)\right) + \left(f(2n)-f(n)\right)\left(2 f(m) - f(2m)\right), (c) mnm-n divides f(2m)f(2n)f(2m)-f(2n) if mm and nn are distinct odd prime numbers.