MathDB
Nice Geometric inequality on angles sines and side lengths

Source: Iran Third Round MO 1997, Exam 1, P2

February 17, 2006
inequalitiestrigonometrygeometrycircumcirclegeometry proposed

Problem Statement

Show that for any arbitrary triangle ABCABC, we have sin(A2)sin(B2)sin(C2)abc(a+b)(b+c)(c+a).\sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \leq \frac{abc}{(a+b)(b+c)(c+a)}.