MathDB
J 16

Source:

May 25, 2007
Divisor Functions

Problem Statement

We say that an integer m1m \ge 1 is super-abundant if σ(m)m>σ(k)k\frac{\sigma(m)}{m}>\frac{\sigma(k)}{k} for all k{1,2,,m1}k \in \{1, 2,\cdots, m-1 \}. Prove that there exists an infinite number of super-abundant numbers.