MathDB
China Mathematical Olympiad 2018 Q6

Source: China Hangzhou ,Dec 16 , 2017

November 16, 2017
inequalitiesalgebraChinacombinatoricsCMO

Problem Statement

China Mathematical Olympiad 2018 Q6 Given the positive integer n,kn ,k (n>k)(n>k) and a1,a2,,an(k1,k) a_1,a_2,\cdots ,a_n\in (k-1,k) ,if positive number x1,x2,,xnx_1,x_2,\cdots ,x_n satisfying:For any set I{1,2,,n}\mathbb{I} \subseteq \{1,2,\cdots,n\} ,I=k|\mathbb{I} |=k,have iIxiiIai\sum_{i\in \mathbb{I} }x_i\le \sum_{i\in \mathbb{I} }a_i , find the maximum value of x1x2xn.x_1x_2\cdots x_n.