MathDB
Problems
Contests
National and Regional Contests
China Contests
China National Olympiad
2018 China National Olympiad
6
China Mathematical Olympiad 2018 Q6
China Mathematical Olympiad 2018 Q6
Source: China Hangzhou ,Dec 16 , 2017
November 16, 2017
inequalities
algebra
China
combinatorics
CMO
Problem Statement
China Mathematical Olympiad 2018 Q6 Given the positive integer
n
,
k
n ,k
n
,
k
(
n
>
k
)
(n>k)
(
n
>
k
)
and
a
1
,
a
2
,
⋯
,
a
n
∈
(
k
−
1
,
k
)
a_1,a_2,\cdots ,a_n\in (k-1,k)
a
1
,
a
2
,
⋯
,
a
n
∈
(
k
−
1
,
k
)
,if positive number
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots ,x_n
x
1
,
x
2
,
⋯
,
x
n
satisfying:For any set
I
⊆
{
1
,
2
,
⋯
,
n
}
\mathbb{I} \subseteq \{1,2,\cdots,n\}
I
⊆
{
1
,
2
,
⋯
,
n
}
,
∣
I
∣
=
k
|\mathbb{I} |=k
∣
I
∣
=
k
,have
∑
i
∈
I
x
i
≤
∑
i
∈
I
a
i
\sum_{i\in \mathbb{I} }x_i\le \sum_{i\in \mathbb{I} }a_i
∑
i
∈
I
x
i
≤
∑
i
∈
I
a
i
, find the maximum value of
x
1
x
2
⋯
x
n
.
x_1x_2\cdots x_n.
x
1
x
2
⋯
x
n
.
Back to Problems
View on AoPS