MathDB
ringness of sets

Source: LIMIT 2019 CBS2 P3

April 28, 2021
abstract algebra

Problem Statement

A subset WW of the set of real numbers is called a ring if it contains 11 and if for all a,bWa,b\in W, the numbers aba-b and abab are also in WW. Let S={m2nm,nZ}S=\left\{\frac m{2^n}|m,n\in\mathbb Z\right\} and T={pqp,qZ,q odd}T=\left\{\frac pq|p,q\in\mathbb Z,q\text{ odd}\right\}. Then <spanclass=latexbold>(A)</span> neither S nor T is a ring<span class='latex-bold'>(A)</span>~\text{neither }S\text{ nor }T\text{ is a ring} <spanclass=latexbold>(B)</span> S is a ring, T is not a ring<span class='latex-bold'>(B)</span>~S\text{ is a ring, }T\text{ is not a ring} <spanclass=latexbold>(C)</span> T is a ring, S is not a ring<span class='latex-bold'>(C)</span>~T\text{ is a ring, }S\text{ is not a ring} <spanclass=latexbold>(D)</span> both S and T are rings<span class='latex-bold'>(D)</span>~\text{both }S\text{ and }T\text{ are rings}