MathDB
China 2010 quiz2 problem 3

Source:

September 8, 2010
combinatorics unsolvedcombinatorics

Problem Statement

Let AA be a finite set, and A1,A2,,AnA_1,A_2,\cdots, A_n are subsets of AA with the following conditions: (1) A1=A2==An=k|A_1|=|A_2|=\cdots=|A_n|=k, and k>A2k>\frac{|A|}{2}; (2) for any a,bAa,b\in A, there exist Ar,As,At(1r<s<tn)A_r,A_s,A_t\,(1\leq r<s<t\leq n) such that a,bArAsAta,b\in A_r\cap A_s\cap A_t; (3) for any integer i,j(1i<jn)i,j\, (1\leq i<j\leq n), AiAj3|A_i\cap A_j|\leq 3. Find all possible value(s) of nn when kk attains maximum among all possible systems (A1,A2,,An,A)(A_1,A_2,\cdots, A_n,A).