MathDB
Putnam 1954 B5

Source: Putnam 1954

July 17, 2022
Putnamfunctionlimitdifferentiability

Problem Statement

Let f(x)f(x) be a real-valued function, defined for 1<x<1-1<x<1 for which f(0)f'(0) exists. Let (an),(bn)(a_n) , (b_n) be two sequences such that 1<an<0<bn<1-1 <a_n <0 <b_n <1 for all nn and limnan=0=limnbn.\lim_{n \to \infty } a_n = 0 =\lim_{n \to \infty} b_n. Prove that limnf(bn)f(an)bnan=f(0). \lim_{n \to \infty} \frac{ f(b_n )- f(a_n ) }{b_n -a_n} =f'(0).