MathDB
Problems
Contests
Undergraduate contests
Putnam
1954 Putnam
B5
Putnam 1954 B5
Putnam 1954 B5
Source: Putnam 1954
July 17, 2022
Putnam
function
limit
differentiability
Problem Statement
Let
f
(
x
)
f(x)
f
(
x
)
be a real-valued function, defined for
−
1
<
x
<
1
-1<x<1
−
1
<
x
<
1
for which
f
′
(
0
)
f'(0)
f
′
(
0
)
exists. Let
(
a
n
)
,
(
b
n
)
(a_n) , (b_n)
(
a
n
)
,
(
b
n
)
be two sequences such that
−
1
<
a
n
<
0
<
b
n
<
1
-1 <a_n <0 <b_n <1
−
1
<
a
n
<
0
<
b
n
<
1
for all
n
n
n
and
lim
n
→
∞
a
n
=
0
=
lim
n
→
∞
b
n
.
\lim_{n \to \infty } a_n = 0 =\lim_{n \to \infty} b_n.
lim
n
→
∞
a
n
=
0
=
lim
n
→
∞
b
n
.
Prove that
lim
n
→
∞
f
(
b
n
)
−
f
(
a
n
)
b
n
−
a
n
=
f
′
(
0
)
.
\lim_{n \to \infty} \frac{ f(b_n )- f(a_n ) }{b_n -a_n} =f'(0).
n
→
∞
lim
b
n
−
a
n
f
(
b
n
)
−
f
(
a
n
)
=
f
′
(
0
)
.
Back to Problems
View on AoPS