MathDB
Problems
Contests
National and Regional Contests
France Contests
French Mathematical Olympiad
1989 French Mathematical Olympiad
Problem 5
sum a_k and sum(a_k)^(1-1/k)
sum a_k and sum(a_k)^(1-1/k)
Source: France 1989 P5
May 18, 2021
algebra
Summation
Problem Statement
Let
a
1
,
a
2
,
…
,
a
n
a_1,a_2,\ldots,a_n
a
1
,
a
2
,
…
,
a
n
be positive real numbers. Denote
s
=
∑
k
=
1
n
a
k
and
s
′
=
∑
k
=
1
n
a
k
1
−
1
k
.
s=\sum_{k=1}^na_k\text{ and }s'=\sum_{k=1}^na_k^{1-\frac1k}.
s
=
k
=
1
∑
n
a
k
and
s
′
=
k
=
1
∑
n
a
k
1
−
k
1
.
(a) Let
λ
>
1
\lambda>1
λ
>
1
be a real number. Show that
s
′
<
λ
s
+
λ
λ
−
1
s'<\lambda s+\frac\lambda{\lambda-1}
s
′
<
λ
s
+
λ
−
1
λ
. (b) Deduce that
s
′
<
s
+
1
\sqrt{s'}<\sqrt s+1
s
′
<
s
+
1
.
Back to Problems
View on AoPS