Let a0,a1,a2,… be a sequence of positive real numbers satisfying i⋅a2≥(i+1)⋅ai1ai+1 for i=1,2,… Furthermore, let x and y be positive reals, and let bi=xai+yai−1 for i=1,2,…
Prove that the inequality i⋅b2≥(i+1)⋅bi−1bi+1 holds for all integers i≥2.