MathDB
Sequence inequality

Source: Baltic Way 2001

November 17, 2010
inequalitiesalgebra proposedalgebra

Problem Statement

Let a0,a1,a2,a_0,a_1,a_2,\ldots be a sequence of positive real numbers satisfying ia2(i+1)ai1ai+1i\cdot a_2\ge (i + 1)\cdot a_{i_1}a_{i+1} for i=1,2,i=1, 2, \ldots Furthermore, let xx and yy be positive reals, and let bi=xai+yai1b_i=xa_i+ya_{i-1} for i=1,2,i=1, 2, \ldots Prove that the inequality ib2(i+1)bi1bi+1i\cdot b_2\ge (i + 1)\cdot b_{i-1}b_{i+1} holds for all integers i2i\ge 2.