MathDB
Cauchy-Schwarz !

Source:

February 4, 2015

Problem Statement

Let aa , bb , cc be positive real numbers such that a+b+c=a2+b2+c2a+b+c=a^2+b^2+c^2 . Prove that : a2a2+ab+b2b2+bc+c2c2+caa+b+c2\frac{a^2}{a^2+ab}+\frac{b^2}{b^2+bc}+\frac{c^2}{c^2+ca} \geq \frac{a+b+c}{2}