MathDB
SEEMOUS 2022 Problem 3

Source: SEEMOUS 2022

May 29, 2022
linear algebraMatriceshermitianInequality

Problem Statement

Let αC{0}\alpha \in \mathbb{C}\setminus \{0\} and AMn(C)A \in \mathcal{M}_n(\mathbb{C}), AOnA \neq O_n, be such that A2+(A)2=αAA,A^2 + (A^*)^2 = \alpha A\cdot A^*, where A=(Aˉ)T.A^* = (\bar A)^T. Prove that αR\alpha \in \mathbb{R}, α2|\alpha| \le 2. and AA=AA.A\cdot A^* = A^*\cdot A.