MathDB
Problems
Contests
National and Regional Contests
China Contests
South East Mathematical Olympiad
2016 South East Mathematical Olympiad
2
China South East Mathematical Olympiad 2016 Grade11 Q2
China South East Mathematical Olympiad 2016 Grade11 Q2
Source: China Nanchang
July 30, 2016
inequalities
Problem Statement
Let
n
n
n
be positive integer,
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x
1
,
x
2
,
⋯
,
x
n
be positive real numbers such that
x
1
x
2
⋯
x
n
=
1
x_1x_2\cdots x_n=1
x
1
x
2
⋯
x
n
=
1
. Prove that
∑
i
=
1
n
x
i
x
1
2
+
x
2
2
+
⋯
x
i
2
≥
n
+
1
2
n
\sum\limits_{i = 1}^{n}x_i\sqrt{x^2_1+x^2_2+\cdots x^2_i}\ge\frac{n+1}{2}\sqrt{n}
i
=
1
∑
n
x
i
x
1
2
+
x
2
2
+
⋯
x
i
2
≥
2
n
+
1
n
Back to Problems
View on AoPS