MathDB
China South East Mathematical Olympiad 2016 Grade11 Q2

Source: China Nanchang

July 30, 2016
inequalities

Problem Statement

Let nn be positive integer,x1,x2,,xnx_1,x_2,\cdots,x_n be positive real numbers such that x1x2xn=1x_1x_2\cdots x_n=1 . Prove thati=1nxix12+x22+xi2n+12n\sum\limits_{i = 1}^{n}x_i\sqrt{x^2_1+x^2_2+\cdots x^2_i}\ge\frac{n+1}{2}\sqrt{n}