MathDB
3-variable inequality with a weird condition

Source: 239 MO 2024 J5

May 22, 2024
algebrainequalities proposed

Problem Statement

Let a,b,ca, b, c be reals such that a2(c22b1)+b2(a22c1)+c2(b22a1)=0.a^2(c^2-2b-1)+b^2(a^2-2c-1)+c^2(b^2-2a-1)=0. Show that 3(a2+b2+c2)+4(a+b+c)+36abc.3(a^2+b^2+c^2)+4(a+b+c)+3 \geq 6abc.