MathDB
Inequality with 100 variables.

Source: 2019 China Second Round P1 (Paper B)

September 8, 2019
inequalities

Problem Statement

Suppose that a1,a2,,a100R+a_1,a_2,\cdots,a_{100}\in\mathbb{R}^+ such that aia101i(i=1,2,,50).a_i\geq a_{101-i}\,(i=1,2,\cdots,50). Let xk=kak+1a1+a2++ak(k=1,2,,99).x_k=\frac{ka_{k+1}}{a_1+a_2+\cdots+a_k}\,(k=1,2,\cdots,99). Prove that x1x22x99991.x_1x_2^2\cdots x_{99}^{99}\leq 1.