MathDB
Symmetric 3-variable inequality

Source: Serbia JBMO TST 2024 P2

May 25, 2024
inequalities

Problem Statement

Let a,b,ca, b, c be positive reals such that ab+bc+ca=34ab+bc+ca=\frac{3}{4}. Show that (a+b+c)6(98)3(1+(a+b)2)(1+(b+c)2)(1+(c+a)2).(a+b+c)^6 \geq (\frac{9} {8})^3(1+(a+b)^2)(1+(b+c)^2)(1+(c+a)^2). When does equality hold?