MathDB
BMO 2014 SL A5

Source: Balkan MO 2014 Shortlist

October 1, 2016
SequenceInteger sequencealgebra

Problem Statement

A5\boxed{A5}Let nN,n>2n\in{N},n>2,and suppose a1,a2,...,a2na_1,a_2,...,a_{2n} is a permutation of the numbers 1,2,...,2n1,2,...,2n such that a1<a3<...<a2n1a_1<a_3<...<a_{2n-1} and a2>a4>...>a2n.a_2>a_4>...>a_{2n}.Prove that (a1a2)2+(a3a4)2+...+(a2n1a2n)2>n3(a_1-a_2)^2+(a_3-a_4)^2+...+(a_{2n-1}-a_{2n})^2>n^3