MathDB
Algebra expressions

Source: Archimedes Junior 2009

March 17, 2020
algebra

Problem Statement

Consider the numbersA=143658...595598597600A= \frac{1}{4}\cdot \frac{3}{6}\cdot \frac{5}{8}\cdot ...\frac{595}{598}\cdot \frac{597}{600}andB=254769...596599598601B= \frac{2}{5}\cdot \frac{4}{7}\cdot \frac{6}{9}\cdot ...\frac{596}{599}\cdot \frac{598}{601}. Prove that: (a) A<BA < B, (b) A<15990A < \frac{1}{5990}