periodic decimal fractions
Source: 1968-69 Germany R4 12.1
October 13, 2024
number theoryalgebra
Problem Statement
Every nonnegative periodic decimal fraction represents a rational number, also in the form can be represented ( and are natural numbers and coprime, , . Now let , , and be digits to represent numbers in the decadic system. Let or .Prove that it for the numbers:
In the above representation always have the same denominator.[hide=original wording]Jeder nichtnegative periodische Dezimalbruch repr¨asentiert eine rationale Zahl, die auch in der Form p/q dargestellt werden kann (p und q nat¨urliche Zahlen und teilerfremd, p >= 0, q > 0).
Nun seien a1, a2, a3 und a4 Ziffern zur Darstellung von Zahlen im dekadischen System. Dabei sei a1 a3 oder a2 a4. Beweisen Sie! Die Zahlen
z1 = 0, a1a2a3a4 = 0,a1a2a3a4a1a2a3a4...
z2 = 0, a4a1a2a3
z3 = 0, a3a4a1a2
z4 = 0, a2a3a4a1
haben in der obigen Darstellung p/q stets gleiche Nenner.