MathDB
Hardest algebra ever

Source: Kyiv City MO 2022 Round 1, Problem 9.2

January 23, 2022
algebrainequalities

Problem Statement

For any reals x,yx, y, show the following inequality:
(x+4)2+(y+2)2+(x5)2+(y+4)2(x2)2+(y6)2+(x5)2+(y6)2+20\sqrt{(x+4)^2 + (y+2)^2} + \sqrt{(x-5)^2 + (y+4)^2} \le \sqrt{(x-2)^2 + (y-6)^2} + \sqrt{(x-5)^2 + (y-6)^2} + 20
(Proposed by Bogdan Rublov)