MathDB
Imc 2013/1/2

Source: Imc 2013 Problem 2

August 8, 2013
trigonometryIMCcollege contestsBad Latex

Problem Statement

Let f:RR\displaystyle{f:{\cal R} \to {\cal R}} be a twice differentiable function. Suppose f(0)=0\displaystyle{f\left( 0 \right) = 0}. Prove there exists ξ(π2,π2)\displaystyle{\xi \in \left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)} such that f(ξ)=f(ξ)(1+2tan2ξ).\displaystyle{f''\left( \xi \right) = f\left( \xi \right)\left( {1 + 2{{\tan }^2}\xi } \right)}.
Proposed by Karen Keryan, Yerevan State University, Yerevan, Armenia.