MathDB
Inequality

Source: Balkan MO SL 2020 A2

September 9, 2021
inequalitiesalgebraBalkan

Problem Statement

Given are positive reals a,b,ca, b, c, such that 1a+1b+1c=3\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3. Prove that a+bc+b+ca+c+ab3a+b+c12\frac{\sqrt{a+\frac{b}{c}}+\sqrt{b+\frac{c}{a}}+\sqrt{c+\frac{a}{b}}}{3}\leq \frac{a+b+c-1}{\sqrt{2}}.
Albania