MathDB
a^2 + b^2 + c^2 = (pa + qb + rc)^2 + (qa + rb + pc)^2 + (ra + pb + qc)^2

Source: Polish MO Second Round 1963 p1

August 31, 2024
algebrasystem of equationsSystem

Problem Statement

Prove that if the numbers p p , q q , r r satisfy the equality p+q+r=1 p+q + r=1 1p+1q+1r=0 \frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0 then for any numbers a a , b b , c c equality holds a2+b2+c2=(pa+qb+rc)2+(qa+rb+pc)2+(ra+pb+qc)2.a^2 + b^2 + c^2 = (pa + qb + rc)^2 + (qa + rb + pc)^2 + (ra + pb + qc)^2.